翻訳と辞書
Words near each other
・ Symmes Township, Ohio
・ Symmes Valley High School
・ Symmetresia
・ Symmetric algebra
・ Symmetric bilinear form
・ Symmetric Boolean function
・ Symmetric closure
・ Symmetric cone
・ Symmetric convolution
・ Symmetric decreasing rearrangement
・ Symmetric derivative
・ Symmetric difference
・ Symmetric digital subscriber line
・ Symmetric equilibrium
・ Symmetric federalism
Symmetric function
・ Symmetric game
・ Symmetric graph
・ Symmetric group
・ Symmetric Hash Join
・ Symmetric hydrogen bond
・ Symmetric hypergraph theorem
・ Symmetric in Design
・ Symmetric inverse semigroup
・ Symmetric level-index arithmetic
・ Symmetric matrix
・ Symmetric mean absolute percentage error
・ Symmetric monoidal category
・ Symmetric multiprocessing
・ Symmetric multiprocessor system


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Symmetric function : ウィキペディア英語版
Symmetric function

In mathematics, a symmetric function of ''n'' variables is one whose value at any ''n''-tuple of arguments is the same as its value at any permutation of that ''n''-tuple. While this notion can apply to any type of function whose ''n'' arguments have the same domain set, it is most often used for polynomial functions, in which case these are the functions given by symmetric polynomials. There is very little systematic theory of symmetric non-polynomial functions of ''n'' variables, so this sense is little-used, except as a general definition.
== Symmetrization ==
(詳細はeven permutations and subtracting the sum over odd permutations. These operations are of course not invertible, and could well result in a function that is identically zero for nontrivial functions ''f''. The only general case where ''f'' can be recovered if both its symmetrization and anti-symmetrization are known is when ''n'' = 2 and the abelian group admits a division by 2 (inverse of doubling); then ''f'' is equal to half the sum of its symmetrization and its anti-symmetrization.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Symmetric function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.